SUMMARY

The Precipice Sandstone and Evergreen Formation in the Surat Basin, Queensland, are being examined as a reservoir-seal option for future geosequestration of CO₂. Effective reservoir modelling, and prediction of dynamic storage capacity, however, depends upon accurate depositional interpretations relating to an understanding of the stratigraphic architecture. Throughout most of the basin, the Precipice Sandstone is generally considered to have good reservoir properties and lateral continuity. Refined depositional models and a widely-applied sequence stratigraphic framework will enhance prediction of the most prospective play segments for CO₂ injection.

We utilize integrated ichnological-sedimentological facies analysis from core to interpret the Precipice Sandstone as a braided fluvial to braid-delta succession, overlain by lower delta plain to subaqueous delta and estuarine embayment deposits of the Evergreen Formation. Facies successions and core-calibrated wireline logs show brackish-water influenced deposits at several stratigraphic intervals. Brackish-water influenced deposits overlie upper delta plain or braid-plain sediments. They occur laterally adjacent to subaerial lower delta plain strata, and generally cap paraensequence-sets. Seismic surveys resolve lower-order cyclicity, showing parasequence-sets within the Precipice succession that retrograde or aggrade and onlap the basal-Surat unconformity. This stratigraphic arrangement reflects the lowstand and early transgressive systems tracts of a 3rd order depositional sequence or a distinct 4th order sequence. Late transgressive and early highstand systems tracts are more abundant within the lower Evergreen Formation and are interpreted to consist of restricted or estuarine central basin deposits; but these may also represent a 4th order sequence. Additional chronometric data is needed to differentiate between these interpretations.

Depositional and sequence stratigraphic interpretations suggest the Precipice Sandstone has a higher degree of heterogeneity than previously appreciated. Moreover, we show that the Evergreen Formation is not a simple basin-wide sealing unit due to the presence of sandstone geobodies that complexly cross-cut each other (i.e., the ‘Boxvale Sandstone Member’) that may act as vertical fluid conduits. The sequence stratigraphic characteristics of the reservoir-seal pair should be carefully considered when selecting locations for CO₂ sequestration.

Key words: Precipice Sandstone, Evergreen Formation, Surat Basin, sequence stratigraphy, facies analysis.

INTRODUCTION

The Precipice Sandstone and Evergreen formations have been identified as a prospective reservoir-seal target for carbon capture and storage (CCS) in the Surat Basin, due to their large theoretical storage capacity and presumed good, regional sealing characteristics (Bradshaw et al., 2011). However, the geological context in which the units are understood remains immature, largely due to the fact that they are generally not hydrocarbon bearing, particularly in the regions of the basin centre where CCS potential is highest.

Detailed depositional interpretations are lacking, as are basin-wide stratigraphic correlations, hindering the predictive accuracy of reservoir performance and sealing potential.

The Jura-Cretaceous Surat Basin contains up to 2500 m of clastic sedimentary rocks and coal in Queensland and New South Wales, enveloping an area of 327, 000 km². The Surat is broadly time equivalent to the Eromanga and Clarence-Moreton basins, separated by a series of structural highs over which deposits thin locally; the Nebine and Kumbarilla ridges to the west and east, respectively (Power and Devine, 1970; Exxon, 1976; Green et al., 1997). The basin developed as a shallow platform depression following approximately 30 Ma of uplift, exposure, and non-deposition that eroded sediments and volcanics of the underlying Bowen and Gunnedah basins (Exxon, 1976; Green et al., 1997). Strata were laid down atop rocks of Palaeozoic or Permo-Triassic age, forming the thickest accumulation within the north-south trending Mimosa Syncline (Exxon, 1976; Fielding et al., 1990; Hoffmann et al., 2009). A number of other structural features that are parallel to the Mimosa Syncline occur within the basin, and have been interpreted as reactivated incipient basement faults (Fielding et al., 1990; Raza et al., 2009).

Due to a dearth of publically available studies employing detailed facies analysis, environments of deposition are relatively poorly constrained in the Surat Basin. Most workers regard the Precipice Sandstone as representing high-energy, braided river deposits due to thick cross-bedding, and the general lack of muddy intervals with marine palynoflora. In contrast, the Evergreen Formation is considered to represent deposits laid down in meandering rivers and freshwater lakes (Sell et al., 1972; Exxon, 1976; Exxon and
The upper parts of the Evergreen Formation, including the Westgrove Ironstone Member and the Boxvale Sandstone, however, show possible marine indicators in the form of chamositic oolites, unidentified “animal tracks”, asymmetrical ripples, and low angle cross-bedding (Mollan et al., 1972; Exon, 1976). Nonetheless, the Early Jurassic system in the Surat Basin is interpreted to be dominated by non-marine deposits that accumulated in an intracratonic (Fielding, 1996; Yago and Fielding, 1996) or pericratonic setting (Exon, 1976; Exon and Senior, 1976; Veevers et al., 1982; Gallagher et al., 1994; Green et al., 1997).

The stratigraphy of the Surat Basin has garnered substantial interest over several decades (e.g., Power and Devine, 1970; Exon, 1976; Exon and Burger, 1981; McKeller, 1998; Hoffmann et al., 2009; Totterdell et al., 2009; Ziolkowski et al., 2014; Wainman et al., 2015). Yet despite the relatively flat lying nature of the strata, a framework that is agreed upon for every interval beyond the local area has not been established. Lithostratigraphic correlation has yielded several schemes that vary in unit naming and precise timing of deposition (Figure 1; McKeller, 1998; Hoffmann et al., 2009; Ziolkowski et al., 2014). It remains unclear how depositional units relate to chronometric age dates, probably due to a lack of dateable material in the Precipice Sandstone.

![Figure 1 – Comparison of lithostratigraphic schemes used to characterize the Surat Basin stratigraphy. The global eustatic sea level curve (Haq et al. 1987) and supersequences defined in Hoffmann et al. (2009) are shown for reference.](image)

More recently, workers have focused on packaging rocks according to their age and genetic relationships using a sequence stratigraphic approach (e.g., Wells et al., 1994; Hoffmann et al., 2009; Totterdell et al., 2009; Ziolkowski et al., 2014). Three “supersequences” were interpreted from the Surat Basin in Queensland and New South Wales (Hoffmann et al., 2009; Totterdell et al., 2009). The “supersequences” broadly correlate with lithostratigraphic boundaries across the basin, and support a cyclic depositional interpretation of basin fill (Exon and Burger, 1981). On the other hand, a higher resolution sequence stratigraphic interpretation was put forth by Ziolkowski et al. (2014). All past sequence frameworks have used the fluvial / alluvial sequence stratigraphic concepts of Shanley and McCabe (1994) to make inference of the stratal architecture, but this may not be appropriate give alternative depositional interpretations of the strata.

The aim of this study was to integrate ichnological and sedimentological facies analysis from core to recognize the juxtaposition of facies and highlight important stratigraphic surfaces that can be mapped with logs and seismic. In context, these will improve the current sequence stratigraphic understanding of the Precipice-Evergreen interval and be used for predicting reservoir characteristics and connectivity in prospective areas for CCS across the northern and central part of the Surat Basin.

DATASET AND METHODS

Five cores that intersect the entire Precipice and Evergreen succession from the northern part of the basin were logged for their sedimentological and ichnological characteristics: Roma 8, Taroom 17, Woleebee Creek GW4, West Wandoan 1, and Chinchilla 4, from approximately east to west, respectively. Approximately 200 additional wells that have wireline logs but no core were used to supplement the core data.
Nearly 4000 2D seismic lines, and nine 3D seismic surveys volumes were integrated to calibrate the seismic responses to core and logs with appropriate time-depth relationships. Selected 3D seismic volumes that pass through the cored wells were the main focus but 2D seismic was used in areas lacking 3D. Seismic data was tied to well logs by creating synthetic seismograms from the density and sonic logs.

The basic process included making facies interpretations from core and then tying core to the respective wireline log motif. Process-response sedimentological criteria were the basis for the major subdivision of facies and facies associations, and ichnological details were supplemental, providing important insights into the physico-chemical conditions occurring in the environments at the time of deposition. The log signature from core was used to interpret facies associations in wells without core. Potentially important sequence stratigraphic surfaces were recognized by the juxtaposition of facies; stratal arrangements that do not obey Walther’s Law. The candidate surfaces were compared with seismic data to confirm their regional significance and interpretation. The combined seismic-geological interpretation was then implemented in a series of regional cross-sections that traced the surfaces and rock packages across the basin.

RESULTS AND INTERPRETATION

Facies analysis from core revealed 28 facies, variously organized into 14 facies associations (Figure 1; Table 1). Facies associations were interpreted to represent deposition in 4 main environments including the alluvial plain / braid plain / upper delta plain, lower delta plain, subaqueous delta, and restricted embayment / estuarine central basin. The alluvial plain / braid plain / upper delta plain facies association is dominated by medium to very coarse grained high-angle tabular cross-bedded sandstones, with minor thin muddy horizons. Bioturbation is low intensity and rare, occurring only in the muddy beds and bedsets, and consists of shallow-tier domiciles or deposit feeding structures of insects. The lower delta plain succession is manifest as complexly cross-cutting facies that vary from planar tabular cross-bedded fine-sandstones, to heterolithic sandstones and mudstones, to burrow mottled siltstones and coal. Bioturbation varies greatly, depending upon facies, but shows both structures of presumed terrestrial origin (mottled siltstones), and traces suggestive of brackish-water conditions (heterolithic sandstones and mudstones). The subaqueous delta facies associations are heterolithic and commonly display physical sedimentary structures indicating salinity fluctuation (e.g., synaereses cracks), deposition of fluid mud (e.g., graded mud beds, muddy current ripples, grain size transitional current ripples), and mixed-energy conditions (e.g., combined flow ripples). Bioturbation is low intensity, and sporadically distributed, primarily occurring within muddy facies and consisting of marine ichnogenera. Finally, restricted embayment / estuarine central basin facies associations comprise mixed sandstone and mudstone or mudstone-dominated strata that show evidence of mixed-energy conditions (i.e., waves and unidirectional currents). The ichnology of the muddy beds and bedsets is higher intensity than other facies associations, and shows low, yet greater, ichnological diversity than the other associations.

Seismic analysis indicates that there are five main reflectors within the Precipice-Evergreen succession. These broadly correspond to surfaces showing the juxtaposition of environments interpreted from core, or to unique facies such as chamositic olites in the lower Evergreen Formation. The basal reflector (Seismic Event 5; Figure 3, orange) tracks the base-Jurassic unconformity. However, the reflector is not consistent across the basin and does not have a unique seismic character due to changes in seismic response corresponding to truncation of the underlying sediment. Therefore, the reflector varies from hard impedance layers to soft impedance layers across the basin in a relationship closely tied to the underlying stratigraphy. Seismic Event 4 corresponds to the first seismic even occurring above the unconformity and is marked by a negative amplitude (Figure 3, blue) that results from low velocity and low acoustic impedance. The reflector broadly corresponds to the top of the alluvial plain / braid plain / upper delta plain facies associations. Seismic Event 4 is only present on the eastern side of the basin and onlaps Seismic Event 5 towards the western part of the basin. Seismic event 3 is characterised by a high amplitude positive excursion (Figure 3, green) resulting from an increase in acoustic impedance and associated with high gamma ray values; it is the seismic representation of a maximum flooding surface within lower delta plain strata. Seismic Event 2 (Figure 3, red) is characterized by a high amplitude positive reflector. It is closely related to ironstone cemented sandstone bands and is interpreted to represent a transgressive surface. The interval between Seismic Events 2 and 3 ranges from approximately 40 m to 90 m in thickness, and exhibits several seismic peaks and troughs that are not laterally continuous across any appreciable distance. Finally, Seismic Event 1 (Figure 3, yellow) is a reflector with negative amplitude resulting from a decrease in acoustic impedance. This reflector relates to an interpreted regional flooding surface and generally show a back-stepping pattern towards the northwest. The sedimentary packages contained between Seismic Events 1 and 2 show variable thickness and evidence of cross-cutting.
Figure 2 – Litho for Woleebee Creek GW4 showing details of the ichnological and sedimentological characteristics of the strata, along with depositional and initial sequence stratigraphic interpretations.
<table>
<thead>
<tr>
<th>Facies Association</th>
<th>Thickness</th>
<th>Vertical Profile</th>
<th>Dominant Lithology</th>
<th>Sedimentary Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA0</td>
<td>12–83 m</td>
<td>Amalgamated, subtly fining upward or blocky</td>
<td>Sandstone, minor siltstone and conglomerate (>90% sandstone)</td>
<td>Alluvial Plain / Braid Plain / Upper Delta Plain Channel</td>
</tr>
<tr>
<td>FA1</td>
<td>1–3 m</td>
<td>Fining upward</td>
<td>Sandstone with minor siltstone to sub-equal proportions of sandstone and siltstone (50–90% sandstone)</td>
<td>Alluvial Plain / Braid Plain / Upper Delta Plain Channel Bar Top to Proximal Overbank</td>
</tr>
<tr>
<td>FA2</td>
<td>1–3 m</td>
<td>Fining upward, coarsening upward, or none</td>
<td>Sub-equal proportions of sandstone and siltstone to Silstone with minor sandstone and organics (10–50% sandstone)</td>
<td>Alluvial Plain / Braid Plain / Upper Delta Plain Distal Overbank / Flood Plain</td>
</tr>
<tr>
<td>FA10</td>
<td>2–10 m</td>
<td>Fining upward, blocky, sometimes amalgamated</td>
<td>Sandstone, minor siltstone (>90% sandstone)</td>
<td>Lower Delta Plain Distributary Channel / Coastal Plain Channel</td>
</tr>
<tr>
<td>FA11</td>
<td>1–4 m</td>
<td>Fining upward</td>
<td>Sandstone with minor mudstone to sub-equal proportions of sandstone and mudstone (50–90% sandstone)</td>
<td>Lower Delta Plain / Coastal Plain Channel Bar Top to Proximal Overbank</td>
</tr>
<tr>
<td>FA12</td>
<td>1–3 m</td>
<td>Fining upward, coarsening upward, or none</td>
<td>Sub-equal proportions of sandstone and mudstone to mudstone with minor sandstone (10–50% sandstone)</td>
<td>Lower Delta Plain / Coastal Plain Distal Overbank to Flood Plain</td>
</tr>
<tr>
<td>FA13</td>
<td>1–5 m</td>
<td>Coarsening upward, fining-upward or none</td>
<td>Mixed sandstone and mudstone (from 10% sandstone to 70% sandstone)</td>
<td>Interdistributary Bay</td>
</tr>
<tr>
<td>FA20</td>
<td>1–4 m</td>
<td>Fining upward or none</td>
<td>Sub-equal proportions of sandstone and mudstone to sandstone with minor mudstone (50–90% sandstone)</td>
<td>Brackish-Water Dominated Sandy Channel Bar Top or Sandflat</td>
</tr>
<tr>
<td>FA21</td>
<td>1–4 m</td>
<td>Fining upward or none</td>
<td>Sub-equal proportions of sandstone and mudstone to mudstone with minor sandstone (10–50% sandstone)</td>
<td>Brackish-Water Dominated Muddy Channel Bar Top or Mudflat</td>
</tr>
<tr>
<td>FA22</td>
<td>1–8 m</td>
<td>Fining upward, or none</td>
<td>Sandstone, minor mudstone (>90% sandstone)</td>
<td>Sandy Lagoon or Proximal Central Basin</td>
</tr>
<tr>
<td>FA23</td>
<td>2–8 m</td>
<td>Fining upward, or none</td>
<td>Mudstone, minor sandstone (<10% sandstone)</td>
<td>Muddy Lagoon or Distal Central Basin</td>
</tr>
<tr>
<td>FA30</td>
<td>3–7 m</td>
<td>Coarsening upward, or blocky</td>
<td>Sandstone, minor mudstone (70–90% sandstone)</td>
<td>Mouthbar / Proximal Delta Front</td>
</tr>
<tr>
<td>FA31</td>
<td>3–7 m</td>
<td>Coarsening upward, or none</td>
<td>Subequal proportions of sandstone and mudstone (30–70% sandstone)</td>
<td>Distal Delta Front</td>
</tr>
<tr>
<td>FA32</td>
<td>3–9 m</td>
<td>Coarsening upward, or none</td>
<td>Mudstone, minor sandstone (10–30% sandstone)</td>
<td>Prodelta</td>
</tr>
</tbody>
</table>

Table 1 – Facies association classification scheme developed for the Precipice Sandstone and Evergreen in the Surat Basin.

Figure 3 – Synthetic seismogram of Woleebee Creek GW4 and seismic line CO3-81-31 illustrating the main regional events observed in this study. The seismic data and synthetic seismogram is displayed in zero phase with SEGY convention polarity.

AEGC 2018: Sydney, Australia
CONCLUSIONS

Our facies analysis results show that the Precipice-Evergreen succession represents a more complex set of palaeoenvironments than has previously been recognized. Integration of sedimentology and ichnology tells a story of a low-gradient fluvial through delta plain depositional environment, where brackish-water conditions increased in their distribution and magnitude throughout time. An alluvial plain or braid plain was the main environment during lower Precipice Sandstone deposition. Periods of progradation and aggradation on the lower delta plain and subaqueous delta characterize the upper Precipice Sandstone. Finally, as base level continued to rise during deposition of the lower Evergreen Formation, large parts of the northern Surat Basin were transgressed and restricted estuarine conditions prevailed.

The integration of facies analysis from core, wireline log correlations, and seismic reflection data indicate that the Precipice to lower Evergreen succession consists of three 4th-order depositional cycles, or alternatively the lowstand, transgressive, and highstand systems tracts of a 3rd order cycle. Five major seismic reflectors are observed, and they generally correspond to the juxtaposition of facies determined from core. Seismic reflectors show the backstepping of deltaic parasequences in the upper Precipice and lower Evergreen, and highlight the basin-wide flooding associated with estuarine conditions in the Westgate Ironstone Member.

A detailed sequence stratigraphic understanding the Precipice-Evergreen succession is important in that it allows greater predictability of reservoir characteristics and their continuity across the basin, especially for constraining geostatistical models in the absence of core or well data. Reservoir prediction is a primary concern for static reservoir modelling and for confidence in the fidelity of dynamic modelling results. Our work shows that some of the reservoir storage intervals in the Precipice Sandstone had marine influence on deposition, and geobody geometries that differ from the commonly applied sheet-sandstone model. Additionally, our work suggests that the Evergreen Formation does not have the same potential sealing capacity everywhere, due to the presence of deltaic sandstones that may act as vertical fluid transmission pathways.

ACKNOWLEDGMENTS

This project was co-funded by the Australian Government through the CCS - RD & D programme, ACALET’s ACA Low Emissions Technology, and by the University of Queensland. ANLEC R&D funded VB’s and JE’s contributions. We thank the employees of the Exploration Data Centre – Department of Natural Resources and Mines in Zillmere, Queensland for their assistance with core and access to Hylgger photographs.

REFERENCES

McKeller, J.L., 1998, Late Early to Late Jurassic palynology, biostratigraphy and palaeogeography of the Roma Shelf area, northwestern Surat Basin, Queensland, Australia: Phd Thesis, School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia, 515 pp.

