CO₂ sequestration-EOR in Wuqi oil reservoir – Yanchang Field, China: Estimation of CO₂ storage capacity using a two-stage well test

Vahab Honari¹ Jim Underschultz¹ Xingjin Wang¹,² Andrew Garnett¹ Xiangzeng Wang³ Ruimin Gao¹ Quansheng Liang³

¹Energy Initiative, University of Queensland, Brisbane, Australia
²Austar Gas, Sydney, Australia
³Shaanxi Yanchang Petroleum (Group), Xian, China

Depleted hydrocarbon reservoirs, deep saline aquifers, deep coal seams and shales are considered as potential CO₂ geological storage sites. However, depleted (mature) oil fields are often considered as first targets for geosequestration where the cost can be offset by enhancing oil recovery as well as utilising the existing infrastructure and facilities. However, evaluation of CO₂ injectivity/dynamic storage capacity and ultimate CO₂ enhanced oil recovery (EOR) are key elements for site selection and a successful CO₂ storage – EOR project.

The Yanchang Petroleum Company’s Yanchang oil field is located at Ordos Basin in north western China and it is the second largest low permeability oil field in China with a very short and inefficient primary oil depletion and secondary water-flooding recovery. Thus, CO₂ EOR was considered an appropriate tertiary oil recovery approach. In this work, the Wuqi reservoir in the Yanchang field was selected to study the feasibility of full-field CO₂ sequestration – EOR. The Wuqi reservoir has been in production for over a decade using both primary and secondary oil recovery methods and has historical data that can be history matched to reduce the uncertainty for a CO₂-EOR field development plan. To acquire essential dynamic data to evaluate CO₂ injectivity/dynamic storage capacity, a specific two-stage well testing design is proposed to inject both water and CO₂. It provides accurate effective permeability estimates for the water (test phase 1) and CO₂ (test phase 2) at the injecting well and estimates of the water and CO₂ fronts in the reservoir. Using two monitoring wells significantly increase the radius of investigation (ROI) and also describes the reservoir heterogeneity.